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Abstract

Bending vibrations of geometrically nonlinear beams, which are connected with some clearance in their contact areas,

are analyzed during dynamic extending and retracting motion of the different segments. For the physical model of a fork

lifter, as an example of application, the governing system equations are derived by applying Hamilton’s principle. Using a

discretization procedure, based on admissible shape functions, a system of coupled, nonlinear, time-varying, ordinary

differential equations is generated. Linearization and model reduction leads to a sequence of simple models. On the basis of

these models, an adaptive state regulator and an adaptive full-state observer (Luenberger Observer) are designed for

vibration suppression using the optimal linear quadratic regulator (LQR). The adaptive controller and observer are applied

to the original, significantly more complicated, geometrically nonlinear and time-varying system with clearance so that the

robustness of the controlled system can be studied during dynamic extending and retracting motions.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many technical devices contain slidable systems of structural components with clearance as, e.g., the ladder
of a ladder truck or the telescopic mast of a fork lifter (see Fig. 1). Due to the required lightweight
construction of the extending and retracting segments of these systems, bending vibrations occur, which have
to be suppressed by active control.

A first step to develop a controller concept for prevention from harmful vibrations is an appropriate
modeling of such systems. In many publications, e.g. Ref. [1], a multi-body approach is used. This
contribution presents an alternative approach, using a fork lifter with a two-sectional telescopic mast as an
example of application. The two segments of the mast are modeled as flexible beams. The clearance, which
always exists in such systems, produces nonlinear effects and the different segments are pre-stressed due to
their self-weight and the weight of the transported good. In Ref. [2] the modeling is shown for systems with a
non-eccentric load. The different segments are supposed to be slender and modeled as Bernoulli/Euler beams.
In the present contribution the load is supposed to act eccentrically on the system (see Fig. 1) and for large
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Fork lifter and system model.
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deformations, the beams are modeled as geometrically nonlinear Timoshenko beams. The discrete contact
forces between the different segments are realized via spring–damper systems. Compared to Ref. [3], where the
telescopic motion is supposed to be quasi-static, the dynamics of the extending and retracting motion of the
different segments is taken into account in this contribution.

2. Physical model

The procedure is illustrated in Fig. 2 for the considered two-section telescopic beam system. Beam 1 is fixed
at a rigid vehicle unit with the prescribed displacement u0ðtÞ. Beam 2 carries an eccentric point load. The
deformation of the beams is represented by the horizontal displacements u1ðz1; tÞ and u2ðz2; tÞ, the vertical
displacements w1ðz1; tÞ and w2ðz2; tÞ and the angles a1ðz1; tÞ and a2ðz2; tÞ. Assuming that the longitudinal axes of
the beams are inextensible, one obtains the kinematic relations

wj;zj
¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

j;zj

q
ðj ¼ 1; 2Þ (1)

between the horizontal displacements ujðzj ; tÞ and the vertical displacements wjðzj ; tÞ (j ¼ 1; 2).
The model is specified by the following parameters: length l of the beams (to be equal in most practical

applications), constant cross-sectional areas A1;2, constant cross-sectional moments of inertia I1;2, density r,
Young’s modulus E and shear modulus G of the two flexible components, mass mL and eccentricity aL of the
load, mass of the vehicle mT and given telescopic lengths lAðtÞ and lLðtÞ. The contact is defined by the given
number n of contact points, the clearance lS, spring stiffness c, and damping coefficient d. In the axial
direction it is assumed that there is no friction and that the entire force flow goes from the upper part into the
lower part through the lowest contact point.

3. Formulation

3.1. Boundary value problem

The system equations are derived by applying the extended Hamilton’s principle

d
Z t1

t0

ðT � V Þdtþ

Z t1

t0

W virt dt ¼ 0, (2)
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Fig. 2. Model in undeformed and deformed state.
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where T is the kinetic energy, V is the potential energy and W virt is the virtual work of the non-conservative
forces of the considered system. The potential energy V is divided into an elastic part V e which is derived using
Green’s nonlinear strain tensor and into Vg, which is due to gravity. It is assumed that there is no warping of
the cross-sectional areas which are supposed to be symmetrical and that the vertical velocities w1;t and w2;t are
negligible for the kinetic energy of the system. The elastic part Ve of the potential energy reads in a third-order
approximation for each of the two beams

V
ð3Þ
ej ¼

Z l

0

GAj

2
ðuj;zj
� ajÞ

2
þ

EIj

2
a2j;zj

� �
dzj ðj ¼ 1; 2Þ (3)

and the potential energy V g, which is due to gravity, reads in a third-order approximation

V
ð3Þ
g1 ¼

l

2
rA1lg�

1

2
rA1g

Z l

0

ðl � z1Þu
2
1;z1

dz1 (4)

for the first beam,

V
ð3Þ
g2 ¼ lAðtÞ þ

l

2

� �
rA2lg�

1

2
rA2g l

Z lA

0

u2
1;z1

dz1 þ

Z l

0

ðl � z2Þu
2
2;z2

dz2

� �
(5)
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for the second beam and

V
ð3Þ
gL ¼ mLgðlAðtÞ þ lLðtÞÞ �

1

2
mLg

Z lA

0

u2
1;z1

dz1 �
1

2
mLg

Z lL

0

u2
2;z2

dz2

�mLgaL a2ðlLðtÞ; tÞ �
1

6
a32ðlLðtÞ; tÞ

� �
(6)

for the load. For the kinetic energy one obtains

T1 ¼
1

2
rI1

Z l

0

a21;t dz1 þ
1

2
rA1

Z l

0

ðu0;t þ u1;tÞ
2 dz1 (7)

for the first beam,

T2 ¼
1

2
rI2

Z l

0

a22;t dz2

þ
1

2
rA2

Z l

0

ððu0;t þ u2;tÞ
2
þ ð1� u2

1;z1
ðlAðtÞ; tÞÞl

2
A;tÞdz2 (8)

for the second beam,

T
ð3Þ
L ¼

1

2
mLððu0;t þ u2;z2ðlLðtÞ; tÞlL;t þ u2;tðlLðtÞ; tÞÞ

2

� 2aLa2ðlLðtÞ; tÞðu0;t þ u2;z2 ðlLðtÞ; tÞlL;t þ u2;tðlLðtÞ; tÞÞ

�ða2;z2 ðlLðtÞ; tÞlL;t þ a2;tðlLðtÞ; tÞÞ

þ ½lA;t þ lL;t � aLða2;z2 ðlLðtÞ; tÞlL;t þ a2;tðlLðtÞ; tÞÞ�
2

� ðu2
1;z1
ðlAðtÞ; tÞlA;t þ u2

2;z2
ðlLðtÞ; tÞlL;tÞ

�½lA;t þ lL;t � aLða2;z2ðlLðtÞ; tÞlL;t þ a2;tðlLðtÞ; tÞÞ�

þ aLa22ðlLðtÞ; tÞðlA;t þ lL;tÞða2;z2ðlLðtÞ; tÞlL;t þ a2;tðlLðtÞ; tÞÞÞ (9)

for the load (in a third-order approximation) and

TT ¼
1
2

mT u2
0;t (10)

for the vehicle unit. Since no internal damping of the beam segments will be taken into consideration, as the
worst case for control, the virtual work W virt contains the contact forces between the beams, the driving force
of the vehicle FT and the force F R which is applied on the lower segment of the system at z1 ¼ lR by an
actuator:

W virt ¼
Xn

i¼1

du0 þ du1 ðl � lAðtÞÞ
i � 1

n� 1

� �
þ lAðtÞ; t

� �� �
FK ;i

�
Xn

i¼1

du0 þ du2 ðl � lAðtÞÞ
i � 1

n� 1

� �
; t

� �� �
F K ;i

þ du0ðtÞFT þ du1ðlR; tÞFR. (11)

The contact forces FK ;i ði ¼ 1::nÞ in Eq. (11) are realized via spring–damper systems

FK ;i ¼ CK ðu
�
i Þ þ u�i;tDK ðu

�
i Þ (12)
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Fig. 3. Spring and damping characteristic of the contact formulation.
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with (see Fig. 3)

CK ðu
�
i Þ ¼ c u�i �

1

2
u�i þ

lS

2

� �
sign u�i þ

lS

2

� �
þ

1

2
u�i �

lS

2

� �
sign u�i �

lS

2

� �� �
, (13)

DK ðu
�
i Þ ¼ d 1�

1

2
sign u�i þ

lS

2

� �
þ

1

2
sign u�i �

lS

2

� �� �
(14)

and

u�i ðtÞ ¼ u2 ðl � lAðtÞÞ
i � 1

n� 1

� �
; t

� �
� u1 ðl � lAðtÞÞ

i � 1

n� 1

� �
þ lAðtÞ; t

� �
. (15)

In Eqs. (13)–(15), n is the number of contact points, lS denotes the clearance, c is a spring stiffness, and d is a
damping coefficient.

3.2. Discretization

A classical discretization procedure based on admissible shape functions

u1ðz1; tÞ ¼
XN1

i¼1

qiðtÞU1i
ðz1Þ, (16)

a1ðz1; tÞ ¼
XN1

i¼1

qiðtÞF1i
ðz1Þ, (17)

u2ðz2; tÞ ¼
XN2

i¼1

qN1þiðtÞU2i
ðz2Þ (18)

and

a2ðz2; tÞ ¼
XN2

i¼1

qN1þiðtÞF2i
ðz2Þ (19)

is used to generate system equations of the type

dqTfMðq; lLÞ€q� fðq; _q; u0;t; u0;tt; lA; lA;t; lA;tt; lL; lL;t; lL;tt;FRÞg

þ du0fðm1 þm2 þmL þmT Þu0;tt � f ðq; _q; €q; lL;t; lL;tt;FT Þg ¼ 0. (20)

Appropriate shape functions are modes of a clamped–free Timoshenko beam (segment 1) and of a free–free
Timoshenko beam (segment 2).
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As the motion of the vehicle unit is assumed to be a prescribed function of the time in this contribution, one
obtains

du0 ¼ 0 (21)

and through this a coupled system of nonlinear, time-varying, ordinary differential equations of the type

Mðq; lLÞ€q ¼ fðq; _q; u0;t; u0;tt; lA; lA;t; lA;tt; lL; lL;t; lL;tt;FRÞ, (22)

as the mathematical model.
4. Vibration suppression concept

To suppress vibrations, a state space control concept is introduced with a collocated actuator–sensor pair at
z1 ¼ lR, which is supposed to be ideal in this contribution. For fixed telescopic lengths lA ¼ const: and
lL ¼ const: and with F R ¼ 0 and u0 ¼ const:, the system (Eq. (22)) is time-invariant and can be linearized
about its static equilibrium position q0. The coordinate transformation ql ¼ q� q0 leads to

M€ql þ Cql ¼ b�RF R þ b�0u0;tt, (23)

with the mass matrix M the stiffness matrix C and the input matrices b�R and b�0. The displacement of the first
segment at z1 ¼ lR reads

u1ðlR; tÞ ¼ ½U11ðlRÞ; . . . ;U1N
ðlRÞ; 0; . . . ; 0�ðql þ q0Þ ¼ c�

T

R ql þ uR0
. (24)
4.1. Validation of the mathematical model

The linearized mathematical model (Eq. (23)) is validated for a system with a fixed position of the vehicle
unit, which is defined by the following parameters: l ¼ 1:35m, A1;2 ¼ 0:001m2, I1;2 ¼ 0:83� 10�8 m4,
r ¼ 7850 kg=m3, E ¼ 2:1� 1011 N=m2, G ¼ 0:8� 1011 N=m2, mL ¼ 17:897 kg, aL ¼ 0:5m, lS ¼ 0m,
c ¼ 108 N=m, d ¼ 0Ns=m, n ¼ 3, N1 ¼ 4, N2 ¼ 6. The validation takes place by comparing the natural
frequencies of the linearized model (Eq. (23)) to those of a corresponding FE-model (ANSYS) with 5400
SOLID45-elements, 2 MASS21-elements (load and vehicle unit) and 8976 nodes. The first three natural
frequencies are plotted versus the telescopic length lT ¼ lA þ lL (with lA ¼ 0 for 0plLol) in Figs. 4–6.
0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Fr
eq

ue
nc

y 
[H

z]

Model
ANSYS

Telescopic length lT = lA + lL [m]

Fig. 4. Natural frequency 1.



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5
2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y 
[H

z]

Model
ANSYS

Telescopic length lT = lA + lL [m]

Fig. 5. Natural frequency 2.

0 0.5 1 1.5 2 2.5
10

15

20

25

30

35

40

Fr
eq

ue
nc

y 
[H

z]

Model
ANSYS

Telescopic length lT = lA + lL [m]

Fig. 6. Natural frequency 3.

P. Barthels, J. Wauer / Journal of Sound and Vibration 315 (2008) 455–466 461
4.2. Model reduction

Eq. (23) represents a ðN1 þN2Þ-degree-of-freedom system. The objective of an order reduction is to find, for
a given model of high order, a model of significantly lower order whose dynamic behavior approximates the
original behavior as well as possible in a specified frequency bandwidth. For this purpose, the system
equations are transformed to modal coordinates according to

ql ¼ Hy, (25)

where y is the vector of modal amplitudes and H is the matrix of normalized eigenvectors hi ði ¼ 1: :N1 þN2Þ

ordered by increasing natural frequencies ðo1po2p � � �poN1þN2
Þ. With

HTMH ¼ I (26)

and

HTCH ¼ diagðo2
i Þ ¼ X, (27)
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one obtains

HTMH|fflfflfflffl{zfflfflfflffl}
I

€yþHTCH|fflfflffl{zfflfflffl}
X

y ¼ HTb�R|fflffl{zfflffl}
b��

R

FR þHTb�0|fflffl{zfflffl}
b��
0

u0;tt (28)

and

u1ðlR; tÞ ¼ c�
T

R Hyþ uR0
¼ c��

T

R yþ uR0
. (29)

If the modes are divided into low-frequency modes which respond dynamically, and high-frequency modes
which respond statically, the reduced model reads

I 0

0 0

� � €yr

€yh

 !
þ

Xr 0

0 Xh

 !
yr

yh

 !
¼

b��Rr

b��Rh

 !
FR þ

b��0r

b��0h

 !
u0;tt, (30)

neglecting the modal mass of the high-frequency modes. With

u1ðlR; tÞ ¼ c��
T

Rr yr þ c��
T

Rh yh þ uR0
(31)

the reduced state space model finally reads

_yr

€yr

 !
|fflfflffl{zfflfflffl}

_z

¼
0 I

�Xr 0

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

yr

_yr

 !
|fflfflffl{zfflfflffl}

z

þ
0

b��tRr

 !
|fflfflfflffl{zfflfflfflffl}

bR

FR þ
0

b��0r

 !
|fflfflfflffl{zfflfflfflffl}

b0

u0;tt, (32)

u1ðlR; tÞ ¼ ½c
��T

Rr ; 0; . . . ; 0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
cT

R

zþ c��
T

Rh X�1h b��Rh|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dR

FR þ c��
T

Rh X�1h b��0h|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
d0

u0;tt þ uR0
. (33)

4.3. Linear quadratic regulator

The idea within the state space approach using the optimal linear quadratic regulator (LQR) is to seek a
linear state feedback with constant gain r, i.e.,

FR ¼ �r
Tz, (34)

such that the following quadratic cost function is minimized:

J ¼

Z 1
0

zTQzþ
1

k
F 2

R þ 2zTnFR

� �
dt. (35)

The solution of this problem is

rT ¼ kðbTRPþ nTÞ, (36)

where P is the symmetric positive definite solution of the algebraic Riccati equation

PAþ ATPþQ� kðPbR þ nÞðbTRPþ nTÞ ¼ 0. (37)

For

ðQ� knnTÞX0; k40, (38)

the existence and the uniqueness of the algebraic Riccati equation is guaranteed if the system is controllable
and observable.
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Fig. 7. Closed-loop system with state observer.
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In this contribution, Q is chosen in such a way that zTQz represents the total energy (potential and kinetic
energy) of the system, n is set to be zero

Q ¼
Xr 0

0 I

� �
; n ¼ 0 (39)

and the value of k is selected to achieve reasonably fast closed-loop poles without excessive values of the
control effort [4].
4.4. Full state observer

The state feedback assumes that the states are known at all times. For the present problem, the state vector z
cannot be measured directly, but the displacement u1ðlR; tÞ of the lower segment and the acceleration of the
rigid vehicle unit u0;tt are measurable. The objective of a Luenberger Observer is to find from this information
an approximate value ẑ of the state vector z. The Luenberger Observer is written as (see Fig. 7)

_̂z ¼ Aẑþ bRF R þ b0u0;tt þ kðu1ðlR; tÞ � û1ðlR; tÞÞ, (40)

with

û1ðlR; tÞ ¼ cTRẑþ dRFR þ d0u0;tt þ uR0
. (41)

Combining the Eqs. (32)/(33) and (40)/(41), one obtains

ð_z� _̂zÞ ¼ ðA� kcTRÞðz� ẑÞ. (42)

Eq. (42) shows that the error of the observer goes to zero if the eigenvalues of A� kcTR (observer poles) have
negative real parts [4]. Due to the collocation of the actuator and of the sensor ðb��R ¼ c��R Þ, the observer poles
correspond to the closed-loop poles (the eigenvalues of A� bRr

T) for

k ¼
0 I

I 0

� �
r. (43)

To ensure that the observer is faster than the closed-loop, the observer poles are placed on the left of the
closed-loop poles. Due to Eq. (43) this can be achieved by repeating the procedure illustrated in Section 4.3
using a new value k�4k. Hence the regulator and the observer can both be designed from a single root locus.



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

b R
r,1

 =
 c

R
r,1

lR = l
lR = 7l/8
lR = 3l/4
lR = 5l/8
lR = l/2
lR = 3l/8
lR = l/4
lR = l/8

Telescopic length lT [m]

**
**

Fig. 8. First element of b��Rr and c��Rr.

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

b R
r,2

 =
 c

R
r,2

lR = l
lR = 7l/8
lR = 3l/4
lR = 5l/8

Telescopic length lT [m]

**
**

Fig. 9. Second element of b��Rr and c��Rr (not controllable).

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

b R
r,2

  =
 c

R
r,2

lR = l/2
lR = 3l/8
lR = l/4
lR = l/8

Telescopic length lT [m]

**
**

Fig. 10. Second element of b��Rr and c��Rr (controllable).

P. Barthels, J. Wauer / Journal of Sound and Vibration 315 (2008) 455–466464



ARTICLE IN PRESS
P. Barthels, J. Wauer / Journal of Sound and Vibration 315 (2008) 455–466 465
4.5. Telescopic operations with clearance

For real telescopic operations, the parameters of the controller and of the observer are determined for
different telescopic lengths lT ¼ lL þ lA (with lA ¼ 0 for 0plLol) and interpolation leads to an adaptive
controller rðlT Þ and an adaptive observer AðlT Þ, kðlT Þ, bRðlT Þ, b0ðlT Þ, cRðlT Þ, dRðlT Þ, d0ðlT Þ, uR0

ðlT Þ. The
position z1 ¼ lR of the actuator–sensor pair has to be selected in such a way that the system is observable
and controllable for any length lT . This is fulfilled if the elements of b��Rr and c��Rr, which coincide due to the
collocation of the actuator–sensor pair, do not vanish. Figs. 8–10 show the developing of the elements of
b��Rr and c��Rr versus the telescopic length lT . In this example the system parameters are the same as in Section 4.1
with N1 ¼ N2 ¼ 4 and Nr ¼ 2.

The developing of the first element of b��Rr and c��Rr (Fig. 8) shows that the first mode of the system is
controllable and observable for each of the eight tested positions and that the controllability and observability
increase with increasing values for lR.

The second mode is not controllable or observable for each actuator–sensor position, which emanates from
the zero-crossings of the plots of the second element of b��Rr and c��Rr shown in Fig. 9. A zero-crossing signifies
that there is a nodal point of vibration of the second mode which coincides with the position of the
actuator–sensor pair. The controllability and observability is only guaranteed for the four lowest positions and
the best results are achieved choosing z1 ¼ lR ¼ l=2 as the position of the actuator–sensor pair (Fig. 10).
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Due to the Luenberger Observer, straightforward measurements of the acceleration of the rigid vehicle unit
u0;ttðtÞ, of the telescopic length lT ðtÞ and of the displacement u1ðlR; tÞ of the lower segment are sufficient to
operate the controller. This allows to apply the adaptive controller and observer, developed for the reduced
linear system model, to the original, significantly more complicated, geometrically nonlinear and time-varying
system with clearance Eq. (22). Due to this approach, the influence of clearance and the robustness of the
controlled system can be studied during dynamic telescopic motions.

5. Simulation results and conclusions

Results are presented here for a system with the parameters of Section 4.1 with N1 ¼ N2 ¼ 4, lS ¼ 0:01m,
c ¼ 108 N=m and d ¼ 103 Ns=m. The presented calculation example is similar to the example in Ref. [3] with
the addition of the extending and retracting motion dynamics of the upper segment and of the load.

The system starts from an initial point without any initial velocity, is accelerated during 3 s ðu0;tt ¼ 5m=s2Þ
and moves with constant velocity during 4 s before it is decelerated during 3 s ðu0;tt ¼ �5m=s2Þ. During the
simulation the telescopic length lT ¼ lA þ lL increases as shown in Fig. 11. Fig. 12 shows the horizontal
position u2ðlLðtÞ; tÞ þ aL cosða2ðlLðtÞ; tÞÞ of the load relative to the vehicle unit during the motion and illustrates
the vibration suppression by state control.

The present contribution shows that controlled vibration suppression of structural telescopic systems with
clearance is possible, even during dynamic telescopic motions. For practical use, the dynamics of the actuator
and of the sensor, which have been assumed to be perfect in this contribution, must be taken into account due
to their possible destabilizing influence on the closed-loop. In real applications the influence of structural
damping, which is neglected in this contribution, will improve the stability of the closed-loop.
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